課程資訊
課程名稱
普通化學丙
General Chemistry (c) 
開課學期
102-1 
授課對象
 
授課教師
陳逸聰 
課號
Chem1009 
課程識別碼
203 101C0 
班次
02 
學分
全/半年
半年 
必/選修
選修 
上課時間
星期三3,4(10:20~12:10)星期五3,4(10:20~12:10) 
上課地點
普102普102 
備註
請依指定修習院系班次修習,詳閱化學系選課須知。初選期間不開放通識A7*課加選。。A7*:物質科學領域。可充抵通識
總人數上限:180人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1021Chem1009_02 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

本「普通化學」課程將以近代化學之發展為起點,首先講解在微觀觀點的論述下,構成原子與分子結構之量子概念。接著講述主導化學反應趨勢之熱力學定律,宰制化學反應快慢之動力學原理,其間並介紹電化學原理之應用。詳細授課內容所涵蓋之章節,條列於下列「課程大綱」中。 

課程目標
本「普通化學」之課程教學設計,旨在讓大一新鮮人理解化學之基本原理與定律。首先從學習量子力學之基本概念,得以了解原子與分子之結構。探究古典與統計熱力學之基本觀念與定律,以決定化學反應之趨勢與走向。理解動力學之原理,以解析化學反應速率之快慢及其反應機制。此外,探討分子內或分子間作用力之化學基本知識,對於後續之複雜生物分子結構、以及物質材料組態與構造將有助於全面性之理解。本課程亦強調化學基礎知識在生物科學上之應用,例如:學習電化學之基本原理,可藉以理解活細胞中因濃度梯度而造成電位變化等相關生理學現象之所據。 
課程要求
1. The Atom in Modern Chemistry
1.1 The Nature of Modern Chemistry
1.2 Macroscopic Methods for Classifying Matter
1.3 Indirect Evidence for the Existence of Atoms: Laws of Chemical Combination
1.4 The Physical Structure of Atoms

3. Chemical Bonding: The Classical Description
3.1 Representations of Molecules
3.2 The Periodic Table
3.3 Forces and Potential Energy in Atoms
3.4 Ionization Energies, the Shell Model of the Atom, and Shielding
3.5 Electron Affinity
3.6 Electronegativity: The Tendency of Atoms to Attract Electrons in Molecules
3.7 Forces and Potential Energy in Molecules: Formation of Chemical Bonds
3.8 Ionic Bonding
3.9 Covalent and Polar Covalent Bonding
3.10 Electron Pair Bonds and Lewis Diagrams for Molecules
3.11 The Shapes of Molecules: Valence Shell Electron-Pair Repulsion Theory
3.12 Oxidation Numbers
3.13 Inorganic Nomenclature

4. Introduction to Quantum Mechanics
4.1 Preliminaries: Wave Motion and Light
4.2 Evidence for Energy Quantization in Atoms
4.3 The Bohr Model: Predicting Discrete Energy Levels in Atoms
4.4 Evidence for Wave- Particle Duality
4.5 The Schrodinger Equation
4.6 Quantum Mechanics of Particle-in-Box Models

5. Quantum Mechanics and Atomic Structure
5.1 The Hydrogen Atom
5.2 Shell Model for Many-Electron Atoms
5.3 Aufbau Principle and Electron Configurations
5.4 Shells and the Periodic Table: Photoelectron Spectroscopy
5.5 Periodic Properties and Electronic Structure

6. Quantum Mechanics and Molecular Structure
6.1 Quantum Picture of the Chemical Bond
6.2 Exact Molecular Orbitals for the Simplest Molecule: H+2
6.3 Molecular Orbital Theory and the linear Combination of Atomic Orbitals Approximation for H+2
6.4 Homonuclear Diatomic Molecules: First-Periods Atoms
6.5 Homonuclear Diatomic Molecules: Second-Periods Atoms
6.6 Heteronuclear Diatomic Molecules
6.7 Summary Comments for the LCAO Method and Diatomic Molecules
6.8 Valence Bond Theory and the Electron Pair Bond
6.9 Orbital Hybridization for Polyatomic Molecules
6.10 Predicting Molecular Structures and Shapes
6.11 Using the LCAO and Valence Bond Methods Together
6.12 Summary and Comparison of the LCAO and Valence Bond Methods

7. Bonding in Organic Molecules
7.1 Petroleum Refining and Hydrocarbons
7.2 The Alkanes
7.3 The Alkenes and Alkynes
7.4 Aromatic Hydrocarbons
7.5 Fullerenes
7.6 Functional Groups and Organic Reactions
7.7 Pesticides and Pharmaceuticals

8. Bonding in Transition Metal Compounds and Coordination Complexes
8.1 Chemistry of the Transition Metals
8.2 Introduction to Coordination Chemistry
8.3 Structures of Coordination Complexes
8.4 Crystal Field Theory: Optical and Magnetic Properties
8.5 Optical Properties and the Spectrochemical Series
8.6 Bonding in Coordination Complexes

9. Kinetic Molecular Description of the States of Matter
9.5 The Kinetic Theory of Gases
9.6 Real Gases: Intermolecular Forces

10. Solid, Liquids, and Phases Transitions
10.4 Phase Equilibrium
10.5 Phase Transition
10.6 Phase Diagrams

11. Solutions
11.5 Phase Equilibrium in Solutions: Nonvolatile Solutes
11.6 Phase Equilibrium in Solutions: Volatile Solutes
11.7 Colloidal Suspensions

12. Thermodynamic Processes and Thermochemistry
12.1 Systems, States, and Processes
12.2 The First Law of Thermodynamics: Internal Energy, Work, and Heat
12.3 Heat Capacity, Enthalpy, and Calorimetry
12.4 The First Law and Ideal Gas Processes
12.5 Molecular Contributions to Internal Energy and Heat Capacity
12.6 Thermochemistry
12.6 Reversible Processes in Ideal Gases

13. Spontaneous Processes and Thermodynamic Equilibrium
13.1 The Nature of Spontaneous Processes
13.2 Entropy and Spontaneity: A Molecular Statistical Interpretation
13.3 Entropy and Heat: Experimental Basis of the Second Law of Thermodynamics
13.4 Entropy Changes in Reversible Processes
13.5 Entropy Changes and Spontaneity
13.6 The Third Law of Thermodynamics
13.7 The Gibbs Free Energy

17. Electrochemistry
17.1 Electrochemical Cells
17.2 Cell Potentials and the Gibbs Free Energy
17.3 Molecular Interpretation of Electrochemical Processes
17.4 Concentration Effects and the Nernst Equation
17.5 Molecular Electrochemistry
17.6 Batteries and Fuel Cells
17.7 Corrosion and Corrosion Prevention
17.8 Electrometallurgy

18. Chemical Kinetics
18.1 Rates of Chemical Reactions
18.2 Rate Laws
18.3 Reaction Mechanisms
18.4 Reaction Mechanisms and Rate
18.5 Effect of Temperature on Reaction Rates
18.6 Molecular Theories and Elementary Reactions
18.7 Reactions in Solution
18.8 Catalysis

 
預期每週課後學習時數
 
Office Hours
 
指定閱讀
 
參考書目
Principles of Modern Chemistry (7th edition) by D. W. Oxtoby, H. P. Gillis, and A. Campion 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
1st exam 
45% 
 
2. 
final exam 
45% 
 
3. 
quiz 
10% 
 
 
課程進度
週次
日期
單元主題